A New Role for Browning as a Redox and Stress Adaptive Mechanism?
نویسندگان
چکیده
The worldwide epidemic of obesity and metabolic disorders is focusing the attention of the scientific community on white adipose tissue (WAT) and its biology. This tissue is characterized not only by its capability to change in size and shape but also by its heterogeneity and versatility. WAT can be converted into brown fat-like tissue according to different physiological and pathophysiological situations. The expression of uncoupling protein-1 in brown-like adipocytes changes their function from energy storage to energy dissipation. This plasticity, named browning, was recently rediscovered and convergent recent accounts, including in humans, have revived the idea of using these oxidative cells to fight against metabolic diseases. Furthermore, recent reports suggest that, beside the increased energy dissipation and thermogenesis that may have adverse effects in situations such as cancer-associated cachexia and massive burns, browning could be also considered as an adaptive stress response to high redox pressure and to major stress that could help to maintain tissue homeostasis and integrity. The aim of this review is to summarize the current knowledge concerning brown adipocytes and the browning process and also to explore unexpected putative role(s) for these cells. While it is important to find new browning inducers to limit energy stores and metabolic diseases, it also appears crucial to develop new browning inhibitors to limit adverse energy dissipation in wasting-associated syndromes.
منابع مشابه
Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure.
The presence of brown adipose tissue (BAT) in human adults opens attractive perspectives to treat metabolic disorders. Indeed, BAT dissipates energy as heat via uncoupling protein (UCP)1. Brown adipocytes are located in specific deposits or can emerge among white fat through the so-called browning process. Although numerous inducers have been shown to drive this process, no study has investigat...
متن کاملAdaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation
Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...
متن کاملAdaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation
Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...
متن کاملIntegration of a Vanadium Redox Flow Battery with a Proton Exchange Membrane Fuel Cell as an Energy Storage System
The proton exchange membrane (PEM) fuel cell is a green energy producer which converts chemical energy to electricity in high yield. Alternatively, the vanadium redox flow battery (VRB) is one of the best rechargeable batteries because of its capability to average loads and output power sources. These two systems are modeled by Nernst equation and electrochemical rules. An effective energy gene...
متن کاملImpact of heavy metal stress on plants and the role of various defense elements
Heavy metal (HMs) pollution is currently one of the serious issues for the environment and agriculture as it has a direct impact on the production yield. This situation has gained a rapid momentum in the present era due to the population pressure, industrialization, and various anthropogenic activities which in turn lead to oxidative ...
متن کامل